Synthesis and characterization of Co-doped Lanthanum Nickelate perovskites for solid oxide fuel cell cathode material



Título del documento: Synthesis and characterization of Co-doped Lanthanum Nickelate perovskites for solid oxide fuel cell cathode material
Revista: Revista mexicana de física
Base de datos: PERIÓDICA
Número de sistema: 000427062
ISSN: 0035-001X
Autores: 1
1
3
4
3
3
Instituciones: 1Universidad Autónoma de Nuevo León, Monterrey, Nuevo León. México
2Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, Apodaca, Nuevo León. México
3Institut de Recherche de Chimie Paris, París. Francia
4Unite de Catalyse et de Chimie du Solide, Villeneuve d'Ascq, Cotes-du-Nord. Francia
Año:
Periodo: Ene-Feb
Volumen: 63
Número: 1
País: México
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico, teórico
Resumen en inglés In the perovskite structures widely investigated and used as Solid Oxide Fuel Cells (SOFC) cathodes, oxygen reduction is mainly limited to the triple phase boundary (TPB), where oxygen (air), electrode and electrolyte are in contact. It is possible via the sol-gel modified Pechini method to: 1) control the material grain size, which can increase TPBs, 2) produce a homogenous material and 3) obtain a cathode material in a faster way compared with the solid state route. LaNi x ,Co 1-x O3 (x=0.3, 0.5, 0.7) were synthesized by the modified Pechini method. The perovskite phase formation began at 350°C and the presence of pure LaNi0.7Co0.3O3 LaNi0.5Co0.5O3 and LaNi0.3Co0.7O3 structures was evidenced by High Temperature X-ray diffraction (HT-XRD) measurements. Scanning Electron Microscopy (SEM) micrographs showed that the microstructure evolves with the amount of cobalt from a coalesced to an open structure. Electrochemical impedance spectroscopy (EIS) on symmetrical cells LaNi x Co 1-x O3/YSZ (yttria-stabilized zirconia)/LaNi x Co 1-x O3 showed that the highest ASR (area specific resistance) is obtained with x = 0.3, whereas ASR values are similar for x = 0.5 and 0.7 at temperatures higher than 600°C. At temperatures lower than 600°C, ASR is the lowest for LaNi0.5Co0.5O3, showing that this composition with intermediate porosity appears as a good choice for an intermediate-temperature solid oxide fuel cell (SOFC)
Disciplinas: Química
Palabras clave: Fisicoquímica y química teórica,
Química húmeda,
Cátodos,
Pilas de combustible de óxido sólido,
Microestructuras
Keyword: Physical and theoretical chemistry,
Wet chemistry,
Cathodes,
Solid oxide fuel cells,
Microstructure
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)