Métodos de modelamiento y predicción de tráfico orientados a plataformas de transmisión de video e IPTV usando series de tiempo



Título del documento: Métodos de modelamiento y predicción de tráfico orientados a plataformas de transmisión de video e IPTV usando series de tiempo
Revista: Revista científica
Base de datos: PERIÓDICA
Número de sistema: 000370870
ISSN: 0124-2253
Autores: 1
1
1
Instituciones: 1Universidad Distrital "Francisco José de Caldas", Facultad de Ingeniería, Bogotá. Colombia
Año:
Periodo: Jul-Dic
Número: 16
Paginación: 10-21
País: Colombia
Idioma: Español
Tipo de documento: Artículo
Enfoque: Analítico, descriptivo
Resumen en español En este artículo se hace una investigación de las principales técnicas que existen para modelar y predecir el tráfico de video de forma estadística, enfocándose en los modelos que usan series de tiempo con el fin de identificar cuáles de estos se acomodan mejor al tráfico estocástico representativo de los sistemas IPTV. Para tal fin, se hace una introducción al análisis a través de series de tiempo, y una presentación del estado del arte acerca de modelamiento de tráfico de video sobre redes de datos. De la investigación se concluye que, de los modelos que permiten describir y predecir el tráfico futuro sobre redes de datos, los que se ajustan en una mayor medida a sistemas IPTV son modelos basados en series ARIMA, de estos, el modelo SARIMA podría describir de forma más precisa las tendencias periódicas del tráfico IPTV
Resumen en inglés This paper, intends to review the most important techniques that allow performing statistic video traffic modeling and forecasting, focusing in time series models, so we can identify which models are better to describe the representative IPTV stochastic traffic. For this purpose, we make a short introduction to time series analysis, and a review of the state of the art on video traffic modeling over data networks. From this research we conclude that, of all the available models to describe and forecast network traffic, the more appropriate to use within IPTV systems are ARIMA time series models, from which SARIMA model are the best option
Resumen en portugués Este artigo tem como objetivo revisar as principais técnicas existentes para a modelagem e previsão de tráfego estatisticamente vídeo, com foco em modelos usando séries temporais, a fim de identificar quais destes são o tráfego estocástico mais adequado representante sistemas IPTV. Para este fim, uma breve introdução à análise por meio de séries temporais, e uma revisão do estado da arte em modelagem de tráfego de vídeo através de redes de dados. A investigação concluiu que, dos modelos para descrever e prever o futuro de tráfego em redes de dados, que são ajustados a uma maior extensão de sistemas de IPTV são baseados em modelos da série ARIMA, estes modelo SARIMA poderia descrever em mais preciso do tráfego periódico tendências IPTV
Disciplinas: Ingeniería
Palabras clave: Ingeniería de telecomunicaciones,
Redes,
Tráfico estocástico,
Video,
Redes de datos,
Series de tiempo
Keyword: Engineering,
Telecommunications engineering,
Networks,
Stochastic traffic,
Video,
Data network,
Time series
Texto completo: Texto completo (Ver HTML)