Revista: | Proyecciones (Antofagasta) |
Base de datos: | PERIÓDICA |
Número de sistema: | 000406100 |
ISSN: | 0716-0917 |
Autores: | Jeyanthi, P1 Maheswari, A2 Vijayalakshmi, M3 |
Instituciones: | 1Govindammal Aditanar College for Women, Department of Mathematics, Thoothukudi, Tamil Nadu. India 2Kamaraj College of Engineering and Technology, Department of Mathematics, Virudhunagar, Tamil Nadu. India 3Dr. G.U. Pope College of Engineering, Department of Mathematics, Thoothukudi, Tamil Nadu. India |
Año: | 2016 |
Periodo: | Jun |
Volumen: | 35 |
Número: | 2 |
Paginación: | 177-186 |
País: | Chile |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico |
Resumen en inglés | Let G be a graph with p vertices and q edges and A = {0, 1, 2,..., d q 2 e}. A vertex labeling f : V (G) → A induces an edge labeling f ∗ de- fined by f ∗(uv) = f(u) +f(v) for all edges uv. For a ∈ A, let vf (a) be the number of vertices v with f(v) = a. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in A, |vf (a) − vf (b)| ≤ 1 and the induced edge labels are 1, 2, 3,..., q. In this paper, we prove that key graph KY (m, n), P(2.QSn), P(m.QSn), C(n.QSm), NQ(m) and K1,n × P2 are vertex equitable graphs |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas puras, Combinatoria, Teoría de gráficas, Etiquetado |
Keyword: | Mathematics, Pure mathematics, Combinatorics, Graph theory, Labelling |
Texto completo: | Texto completo (Ver PDF) |