Multiple phase silicon in submicrometer chips removed by diamond turning



Título del documento: Multiple phase silicon in submicrometer chips removed by diamond turning
Revista: Journal of the Brazilian Society of Mechanical Sciences and Engineering
Base de datos: PERIÓDICA
Número de sistema: 000312281
ISSN: 1678-5878
Autores: 1


2

3
Instituciones: 1Universidade de Sao Paulo, Departamento de Engenharia Mecanica, Sao Carlos, Sao Paulo. Brasil
2Universidade Federal de Sao Carlos, Departamento de Fisica, Sao Carlos, Sao Paulo. Brasil
3Universidade Federal de Mato Grosso do Sul, Departamento de Fisica, Campo Grande, Mato Grosso do Sul. Brasil
Año:
Periodo: Oct-Dic
Volumen: 27
Número: 4
Paginación: 440-448
País: Brasil
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Experimental
Resumen en inglés Continuous chips removed by single point diamond turning of single crystal silicon have been investigated by means of Scanning Electron Microscopy/Transmission Electron Microscopy and micro-Raman Spectroscopy. Three different chip structures were probed with the use of electron diffraction pattern: (i) totally amorphous lamellar structure, (ii) amorphous structure with remnant crystalline material and, (iii) partially amorphous together with amorphous with remnant crystalline material. Furthermore, micro-Raman spectroscopy from the chips left in the cutting tool rake face showed different silicon phases. We have found, from a detailed analysis of the debris, five different structural phases of silicon in the same debris. It is proposed that material removal mechanisms may change along the cutting edge from shearing (yielding lamellar structures) to extrusion. Shearing results from structural changes related to phase transformation induced by pressure and shear deformation. Extrusion, yielding crystalline structures in the chips, may be attributed to a pressure drop (due to an increase in the contact area) from the tool tip towards the region of the cutting edge where brittle-to-ductile transition occurs. From this region upwards, pressure(stress) would be insufficient to trigger phase transformation and therefore amorphous phase would not form integrally along the chip width
Disciplinas: Ingeniería
Palabras clave: Ingeniería de materiales,
Ingeniería electrónica,
Silicón,
Chips,
Diamante,
Remoción,
Semiconductores
Keyword: Engineering,
Electronic engineering,
Materials engineering,
Removal,
Silicon,
Chips,
Diamond,
Semiconductors
Texto completo: Texto completo (Ver PDF)