Revista: | Genetics and molecular biology |
Base de datos: | PERIÓDICA |
Número de sistema: | 000420034 |
ISSN: | 1415-4757 |
Autores: | Shiwei Liu1 Zunzhou Lv1 Yihui Liu1 Ling Li1 Lida Zhang2 |
Instituciones: | 1Shanghai Jiao Tong University, School of Agriculture and Biology, Shanghai. China 2Shanghai Jiao Tong University, Department of Plant Science, Shanghai. China |
Año: | 2018 |
Periodo: | Sep |
Volumen: | 41 |
Número: | 3 |
Paginación: | 624-637 |
País: | Brasil |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Experimental |
Resumen en inglés | Drought is one of the most severe abiotic factors restricting plant growth and yield. Numerous genes functioning in drought response are regulated by abscisic acid (ABA) dependent and independent pathways, but knowledge of in - terplay between the two pathways is still limited. Here, we integrated transcriptome sequencing and network analy - ses to explore interplays between ABA-dependent and ABA-independent pathways responding to drought stress in Arabidopsis thaliana . We identified 211 ABA-dependent differentially expressed genes (DEGs) and 1,118 ABA-independent DEGs under drought stress. Functional analysis showed that ABA-dependent DEGs were signifi - cantly enriched in expected biological processes in response to water deprivation and ABA stimulus, while ABA-independent DEGs were preferentially enriched in response to jasmonic acid (JA), salicylic acid (SA) and gibberellin (GA) stimuli. We found significantly enriched interactions between ABA-dependent and ABA-independent pathways with 94 genes acting as core interacting components by combining network analyses. A link between ABA and JA signaling mediated through a direct interaction of the ABA responsive elements-binding factor ABF3 with the basic helix-loop-helix transcription factor MYC2 was validated by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Our study provides a systematic view of the interplay between ABA-dependent and ABA-independent pathways in response to drought stress |
Disciplinas: | Biología, Química |
Palabras clave: | Genética, Bioquímica, Fisiología vegetal, Estrés hídrico, Acido abscísico, RNA-Seq, Expresión génica, Interacción proteína-proteína, Arabidopsis thaliana |
Keyword: | Genetics, Biochemistry, Plant physiology, Drought stress, Abscisic acid, RNA-Seq, Gene expression, Protein-protein interaction, Interaction network, Arabidopsis thaliana |
Texto completo: | Texto completo (Ver PDF) |