Improving Arabic Sentiment Classification Using a Combined Approach



Título del documento: Improving Arabic Sentiment Classification Using a Combined Approach
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000560560
ISSN: 1405-5546
Autores: 1
2
1
Instituciones: 1University of Bejaia, Department of Computer Science, Bejaia. Argelia
2University of Setif, Department of Computer Science, Setif. Argelia
Año:
Periodo: Oct-Dic
Volumen: 24
Número: 4
Paginación: 1403-1414
País: México
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés The aim of sentiment analysis is to automatically extract and classify a textual review as expressing a positive or negative opinion. In this paper, we study the sentiment classification problem in the Arabic language. We propose a method that attempts to extract subjective parts of document reviews. First, we select explicit opinions related to given aspects. Second, a semantic approach is used to find implicit opinions and sentiments in reviews. Third, we combine the extracted aspect opinions with the sentiment words returned by the lexical approach. Finally, a feature reduction technique is applied. To evaluate the proposed method, support vector machines (SVM) classifier is applied for the classification task on two datasets. Our results indicate that the proposed approach provides superior performance in terms of classification measures.
Disciplinas: Ciencias de la computación
Palabras clave: Inteligencia artificial
Keyword: Text mining,
Opinion mining,
Sentiment classification,
Supervised learning,
Review extraction,
Combined approach,
Artificial intelligence
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)