Experimental Research on Encoder-Decoder Architectures with Attention for Chatbots



Título del documento: Experimental Research on Encoder-Decoder Architectures with Attention for Chatbots
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000560413
ISSN: 1405-5546
Autores: 1
1
2
Instituciones: 1Universitat Politécnica de Valencia, Valencia. España
2Telefònica I+D, Barcelona. España
Año:
Periodo: Oct-Dic
Volumen: 22
Número: 4
Paginación: 1233-1239
País: México
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés Chatbots aim at automatically offering a conversation between a human and a computer. While there is a long track of research in rule-based and retrieval-based approaches, the generation-based approaches are promisingly emerging solving issues like responding to queries in inference that were not previously seen in development or training time. In this paper, we offer an experimental view of how recent advances in close areas as machine translation can be adopted for chatbots. In particular, we compare how alternative encoder-decoder deep learning architectures perform in the context of chatbots. Our research concludes that a fully attention-based architecture is able to outperform the recurrent neural network baseline system.
Disciplinas: Ciencias de la computación
Palabras clave: Inteligencia artificial
Keyword: Chatbot,
Encoder-decoder,
Attention mechanisms,
Artificial intelligence
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)