Nonequilibrium nematic-isotropic interface



Título del documento: Nonequilibrium nematic-isotropic interface
Revista: Brazilian journal of physics
Base de datos: PERIÓDICA
Número de sistema: 000146844
ISSN: 0103-9733
Autores: 1
Instituciones: 1Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais. Brasil
Año:
Periodo: Dic
Volumen: 28
Número: 4
Paginación: 257-266
País: Brasil
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico
Resumen en inglés Liquid crystals have been very fruitful systems to study equilibrium phase transitions. Recently, they have become an important system to study dynamics of first-order phase transitions. The moving nonequilibrium nematic-isotropic interface is a model system to study growth of stable states into metastable states and displays a myriad of dynamical instabilities that, far from equilibrium, drive the system to a scenario of spatio-temporal chaos. We present a mean-field theory for the time evolution of a planar nonequilibrium nematic-isotropic interface for pure liquid crystals using a time dependent Ginzburg-Landau equation, which is one of the simplest approaches to dissipative dynamics. We obtain a theoretical expression for the growth kinetics of the nematic phase into a metastable isotropic phase and compare it with our experimental results. In a directional solidification arrangement we study instabilities of the nematic-isotropic interface of the liquid crystal 8CB doped with water and hexachloroethane. The observed instabilities are similar to cellular instabilities that appear during growth of crystal-melt interfaces of binary mixtures. We then compare our results with known theories of morphological instabilities during crystal growth
Disciplinas: Física y astronomía
Palabras clave: Física de materia condensada,
Termodinámica y física estadística,
Cristales líquidos,
Inestabilidad,
Termodinámica,
Crecimiento de cristales,
Transición de fase,
Ecuaciones de Ginzburg-Landau
Keyword: Physics and astronomy,
Condensed matter physics,
Thermodynamics and statistical physics,
Liquid crystals,
Instability,
Thermodynamics,
Crystal growth,
Phase transition,
Ginzburg-Landau equations
Texto completo: Texto completo (Ver HTML)