Analysis and optimization of gas-centrifugal separation of uranium isotopes by neural networks



Título del documento: Analysis and optimization of gas-centrifugal separation of uranium isotopes by neural networks
Revista: Brazilian journal of chemical engineering
Base de datos: PERIÓDICA
Número de sistema: 000308823
ISSN: 0104-6632
Autores: 1

2
Instituciones: 1Instituto de Pesquisa Energetica e Nucleares, Sao Paulo. Brasil
2Universidade de Sao Paulo, Escola Politecnica, Sao Paulo. Brasil
Año:
Periodo: Jul
Volumen: 19
Número: 3
Paginación: 299-306
País: Brasil
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Experimental
Resumen en inglés Neural networks are an attractive alternative for modeling complex problems with too many difficulties to be solved by a phenomenological model. A feed-forward neural network was used to model a gas-centrifugal separation of uranium isotopes. The prediction showed good agreement with the experimental data. An optimization study was carried out. The optimal operational condition was tested by a new experiment and a difference of less than 1% was found
Disciplinas: Química
Palabras clave: Ingeniería química,
Separación isotópica,
Centrifugación de gas,
Uranio,
Redes neuronales
Keyword: Chemistry,
Chemical engineering,
Isotopic separation,
Gas centrifugation,
Uranium,
Neural networks
Texto completo: Texto completo (Ver HTML)