A hybrid neural model for the optimization of fed-batch fermentations



Título del documento: A hybrid neural model for the optimization of fed-batch fermentations
Revista: Brazilian journal of chemical engineering
Base de datos: PERIÓDICA
Número de sistema: 000308639
ISSN: 0104-6632
Autores: 1


2
Instituciones: 1Universidade Federal do Rio de Janeiro, Instituto Alberto Luiz Coimbra de Pos-Graduacao e Pesquisa de Engenharia, Rio de Janeiro. Brasil
2Universidade Estadual de Campinas, Faculdade de Engenharia Quimica, Campinas, Sao Paulo. Brasil
Año:
Periodo: Mar
Volumen: 16
Número: 1
Paginación: 53-63
País: Brasil
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Experimental, aplicado
Resumen en inglés In this work a hybrid neural modelling methodology, which combines mass balance equations with functional link networks (FLNs), used to represent kinetic rates, is developed for bioprocesses. The simple structure of the FLNs allows the easy and rapid estimation of network weights and, consequently, the use of the hybrid model in an adaptive form. As the proposed model is able to adjust to kinetic and environmental changes, it is suitable for use in the development of optimization strategies for fed-batch bioreactors. The proposed methodology is used to model the processes for penicillin and ethanol production, and the development of an adaptive optimal control scheme is discussed using ethanol fermentation as an example
Disciplinas: Química,
Ingeniería
Palabras clave: Fermentaciones,
Ingeniería química,
Fermentación por lotes,
Control óptimo,
Modelación neural híbrida
Keyword: Chemistry,
Engineering,
Fermentation,
Chemical engineering,
Fed-batch fermentation,
Optimal control,
Hybrid neural modelling
Texto completo: Texto completo (Ver HTML)