Revista: | Boletim da Sociedade Paranaense de Matematica |
Base de datos: | PERIÓDICA |
Número de sistema: | 000395377 |
ISSN: | 0037-8712 |
Autores: | Ali, Shakir1 Haetinger, Claus2 |
Instituciones: | 1Aligarh Muslim University, Department of Mathematics, Aligarh, Uttar Pradesh. India 2Centro Universitario UNIVATES, Centro de Ciencias Exatas e Tecnologicas, Lajeado, Rio Grande do Sul. Brasil |
Año: | 2008 |
Volumen: | 26 |
Número: | 1-2 |
Paginación: | 71–80-71–80 |
País: | Brasil |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico |
Resumen en inglés | Let R be a ring, and α be an endomorphism of R. An additive mapping H: R → R is called a left α-centralizer (resp. Jordan left α-centralizer) if H(xy) = H(x)α(y) for all x, y ∈ R (resp. H(x 2 ) = H(x)α(x) for all x ∈ R). The purpose of this paper is to prove two results concerning Jordan α-centralizers and one result related to generalized Jordan (α, β)-derivations. The result which we refer state as follows: Let R be a 2-torsion-free semiprime ring, and α be an automorphism of R. If H: R → R is an additive mapping such that H(x 2 ) = H(x)α(x) for every x ∈ R or H(xyx) = H(x)α(yx) for all x, y ∈ R, then H is a left α-centralizer on R. Secondly, this result is used to prove that every generalized Jordan (α, β)-derivation on a 2-torsion-free semiprime ring is a generalized (α, β)-derivation. Finally, some examples are given to demonstrate that the restrictions imposed on the hypothesis of the various theorems were not superfluous |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas puras, Algebra, Teoría de anillos, Anillos primos, Algebras de Lie, Centralizadores, Derivación, Algebras de Jordan |
Keyword: | Mathematics, Pure mathematics, Algebra, Ring theory, Prime rings, Lie algebras, Centralizers, Derivation, Jordan algebras |
Texto completo: | Texto completo (Ver PDF) |