Diatomic molecules and fermionic particles with improved Hellmann-generalized Morse potential through the solutions of the deformed Klein-Gordon, Dirac and Schrödinger equations in extended relativistic quantum mechanics and extended nonrelativistic quantum mechanics symmetries



Título del documento: Diatomic molecules and fermionic particles with improved Hellmann-generalized Morse potential through the solutions of the deformed Klein-Gordon, Dirac and Schrödinger equations in extended relativistic quantum mechanics and extended nonrelativistic quantum mechanics symmetries
Revista: Revista mexicana de física
Base de datos: PERIÓDICA
Número de sistema: 000460841
ISSN: 0035-001X
Autores: 1
Instituciones: 1M'sila University, Department of Physics, M'Sila. Argelia
Año:
Periodo: Mar-Abr
Volumen: 68
Número: 2
País: México
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico, teórico
Resumen en inglés In this paper, we investigate the new approximate bound state solution of deformed Klein-Gordon, Dirac and Schrödinger equations in the symmetries of extended relativistic quantum mechanics ERQM and extended nonrelativistic quantum mechanics ENRQM have been obtained with a newly proposed potential called improved Hellmann-generalized Morse potential (IHGMP, for short). To the best of our knowledge, this problem is examined in literature in the usual RQM and NRQM with Hellmann-generalized Morse potential. The potential is a superposition of Hellmann potential, generalized Morse or Deng-Fan potential, and some other exponential terms. By employing the improved approximation to deal with the centrifugal term, Bopp’s shift and standard perturbation theory method. The new approximate analytical energy shift and the corrections of bound state energy eigenvalues in ERQM and ENRQM are obtained for some selected diatomic molecules such as (HCl, LiH, H2, ScH, TiH, VH, CrH, CuLi, TiC, NiC, ScN and ScF). The new values that we get are sensitive to the quantum numbers (j,l,s,m), the potential depths of the improved Hellmann-generalized Morse potential (α,b), the range of the potential α, the dissociation energy D e , the equilibrium bond length r e , and noncommutativity parameters(Θ,σ,χ). We have highlighted three physical phenomena that automatically generate a result of the topological properties of noncommutativity, the first physical phenomena are the perturbative spin-orbit coupling, the second the magnetic induction while the third corresponds to the rotational proper phenomena. In both relativistic and nonrelativistic problems, we show that the corrections on the spectrum energy are smaller than the main energy in the ordinary cases of quantum field theory and quantum mechanics. In the new symmetries of NCQM, it is not possible to get the exact analytical solutions for l = 0 and l ≠ 0, the approximate solutions are available. Four special cases, i
Disciplinas: Física y astronomía
Palabras clave: Física de altas energías,
Ecuación de Klein-Gordon,
Ecuación de Schrodinger,
Potencial de Morse,
Potencial de Hellmann,
Moléculas diatómicas,
Geometría no conmutativa
Keyword: High energy physics,
Klein-Gordon equation,
Schrödinger equation,
Morse potential,
Hellmann potential,
Diatomic molecules,
Noncommutative geometry
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)