Revista: | Revista mexicana de física E |
Base de datos: | PERIÓDICA |
Número de sistema: | 000427317 |
ISSN: | 1870-3542 |
Autores: | Segovia Cháves, Francis1 |
Instituciones: | 1Universidad Surcolombiana, Facultad de Ciencias Exactas y Naturales, Neiva, Huila. Colombia |
Año: | 2018 |
Periodo: | Ene-Jun |
Volumen: | 64 |
Número: | 1 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico, teórico |
Resumen en inglés | In this paper, the solution to the Hamilton-Jacobi equation for the one-dimensional harmonic oscillator damped with the Caldirola-Kanai model is presented. Making use of a canonical transformation, we calculate the Hamilton characteristic function. It was found that the position of the oscillator shows an exponential decay similar to that of the oscillator with damping where the decay is more pronounced when increasing the damping constant γ. It is shown that when γ = 0, the behavior is of an oscillator with simple harmonic motion. However, unlike the damped harmonic oscillator where the linear momentum decays with time, in the case of the oscillator with the Caldirola-Kanai Hamiltonian, the momentum increases as time increases due to an exponential growth of the mass m ( t ) = m e γ t |
Disciplinas: | Física y astronomía |
Palabras clave: | Física, Ecuaciones de Hamilton-Jacobi, Hamiltonianos, Oscilador armónico amortiguado |
Keyword: | Physics, Hamilton-Jacobi equations, Hamiltonians, Damped harmonic oscillator |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |