Revista: | Proyecciones (Antofagasta) |
Base de datos: | PERIÓDICA |
Número de sistema: | 000405933 |
ISSN: | 0716-0917 |
Autores: | Santhakumaran, A.P1 Mahendran, M1 |
Instituciones: | 1Hindustan Institute of Technology and Science, Department of Mathematics, Chennai, Tamil Nadu. India |
Año: | 2016 |
Periodo: | Mar |
Volumen: | 35 |
Número: | 1 |
Paginación: | 67-83 |
País: | Chile |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico |
Resumen en inglés | For a connected graph G of order n ≥ 2, and for any minimum open monophonic set S of G, a subset T of S is called a forcing subset for S if S is the unique minimum open monophonic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing open monophonic number of S, denoted by fom(S), is the cardinality of a minimum forcing subset of S. The forcing open monophonic number of G, denoted by fom(G), is fom(G) = min(fom(S)), where the minimum is taken over all minimum open monophonic sets in G. The forcing open monophonic numbers of certain standard graphs are determined. It is proved that for every pair a, b of integers with 0 ≤ a ≤ b − 4 and b ≥ 5, there exists a connected graph G such that fom(G) = a and om(G) = b. It is analyzed how the addition of a pendant edge to certain standard graphs affects the forcing open monophonic number |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas puras, Combinatoria, Teoría de gráficas, Distancia, Gráficas conexas |
Keyword: | Mathematics, Pure mathematics, Combinatorics, Graph theory, Distance, Connected graphs |
Texto completo: | Texto completo (Ver PDF) |