The forcing open monophonic number of a graph



Título del documento: The forcing open monophonic number of a graph
Revista: Proyecciones (Antofagasta)
Base de datos: PERIÓDICA
Número de sistema: 000405933
ISSN: 0716-0917
Autores: 1
1
Instituciones: 1Hindustan Institute of Technology and Science, Department of Mathematics, Chennai, Tamil Nadu. India
Año:
Periodo: Mar
Volumen: 35
Número: 1
Paginación: 67-83
País: Chile
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico
Resumen en inglés For a connected graph G of order n ≥ 2, and for any minimum open monophonic set S of G, a subset T of S is called a forcing subset for S if S is the unique minimum open monophonic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing open monophonic number of S, denoted by fom(S), is the cardinality of a minimum forcing subset of S. The forcing open monophonic number of G, denoted by fom(G), is fom(G) = min(fom(S)), where the minimum is taken over all minimum open monophonic sets in G. The forcing open monophonic numbers of certain standard graphs are determined. It is proved that for every pair a, b of integers with 0 ≤ a ≤ b − 4 and b ≥ 5, there exists a connected graph G such that fom(G) = a and om(G) = b. It is analyzed how the addition of a pendant edge to certain standard graphs affects the forcing open monophonic number
Disciplinas: Matemáticas
Palabras clave: Matemáticas puras,
Combinatoria,
Teoría de gráficas,
Distancia,
Gráficas conexas
Keyword: Mathematics,
Pure mathematics,
Combinatorics,
Graph theory,
Distance,
Connected graphs
Texto completo: Texto completo (Ver PDF)