Revista: | Polibits |
Base de datos: | PERIÓDICA |
Número de sistema: | 000373704 |
ISSN: | 1870-9044 |
Autores: | Nápoles, Gonzalo1 Grau, Isel2 Bello, Rafael1 |
Instituciones: | 1Universidad Central "Marta Abreu" de Las Villas, Laboratorio de Inteligencia Artificial, Santa Clara, Villa Clara. Cuba 2Universidad Central "Marta Abreu" de Las Villas, Laboratorio de Bioinformática, Santa Clara, Villa Clara. Cuba |
Año: | 2012 |
Periodo: | Jul-Dic |
Número: | 46 |
Paginación: | 5-11 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Experimental |
Resumen en inglés | Particle Swarm Optimization (PSO) is a bioinspired meta–heuristic for solving complex global optimization problems. In standard PSO, the particle swarm frequently gets attracted by suboptimal solutions, causing premature convergence of the algorithm and swarm stagnation. Once the particles have been attracted to a local optimum, they continue the search process within a minuscule region of the solution space, and escaping from this local optimum may be difficult. This paper presents a modified variant of constricted PSO that uses random samples in variable neighborhoods for dispersing the swarm whenever a premature convergence (or stagnation) state is detected, offering an escaping alternative from local optima. The performance of the proposed algorithm is discussed and experimental results show its ability to approximate to the global minimum in each of the nine well–known studied benchmark functions |
Disciplinas: | Ciencias de la computación |
Palabras clave: | Procesamiento de datos, Optimización por enjambre de partículas, Convergencia prematura, Vecindad variable, Muestra aleatoria |
Keyword: | Computer science, Data processing, Particle swarm optimization, Premature convergence, Variable neighborhood, Random sample |
Texto completo: | Texto completo (Ver HTML) |