A Social Framework for Set Recommendation in Group Recommender Systems



Título del documento: A Social Framework for Set Recommendation in Group Recommender Systems
Revista: Latin-American Journal of Computing (LAJC)
Base de datos:
Número de sistema: 000565060
ISSN: 1390-9134
Autores: 1
Instituciones: 1Universitat Pompeu Fabra, Departamento de Información y Tecnologías de Comunicación, Barcelona. España
Año:
Volumen: 3
Número: 1
Paginación: 9-18
País: Ecuador
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés This research article presents a study about the background in Group Recommender Systems and how social factors are directly related to these applications. Some important group recommender systems in academia are described to exemplify their contribution in different domains. Besides, a framework that is intended to improve group recommender systems is proposed. The main idea of the framework is to enhance social cognition to help the group members agree and make a decision. Its structure includes a process where an influential group is detected among the target groups of people to recommend to. Social influence detection uses the knowledge behind online social connections and interactions. Trying to understand human behavior and ties among groups in a social network and how to use this to improve group recommender systems is considered the main challenge for future research. Combining this with the kind of item recommendation which involves a temporal sequence of ordered elements will present a novel and original path in Group Recommender Systems design.
Disciplinas: Ciencias de la computación,
Ciencias de la computación,
Sociología
Palabras clave: Inteligencia artificial,
Procesamiento de datos,
Organización social
Keyword: Artificial intelligence,
Data processing,
Social organization
Texto completo: Texto completo (Ver PDF)