Conceptual DFT reactivity descriptors computational study of graphene and derivatives flakes: doped graphene, graphane, fluorographene, graphene oxide, graphyne, and graphdiyne



Título del documento: Conceptual DFT reactivity descriptors computational study of graphene and derivatives flakes: doped graphene, graphane, fluorographene, graphene oxide, graphyne, and graphdiyne
Revista: Journal of the Mexican Chemical Society
Base de datos: PERIÓDICA
Número de sistema: 000447410
ISSN: 1870-249X
Autores: 1
1
Instituciones: 1Universidad de Guanajuato, Departamento de Farmacia, Guanajuato. México
Año:
Periodo: Jul-Sep
Volumen: 64
Número: 3
Paginación: 238-252
País: México
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Experimental, analítico
Resumen en español Los alótropos de carbono como el grafeno, el grafano, el fluorografeno, el grafeno dopado con N, B o P, el óxido de grafeno, el grafino y el grafidiino se estudiaron mediante los índices de los descriptores de reactividad de la DFT conceptual. Ello, para comprender su comportamiento químico y cómo interactúan con diferentes tipos de moléculas, por ejemplo, fármacos (debido a su posible uso en aplicaciones como transportadores de fármacos). Este trabajo muestra los resultados de los cambios en los índices de los descriptores de reactividad global y local y las características geométricas de los diferentes derivados de grafeno y, predice cómo podrián interactuar con moléculas pequeñas. La dureza molecular, la energía de ionización, la afinidad electrónica, el índice de potencia electrodonadora y electroaceptora son los descriptores DFT de reactividad global calculados. Mientras que las funciones de fukui, la suavidad local y el potencial electrostático molecular son los descriptores de reactividad local. Los resultados sugieren que la hibridación de los carbonos en los derivados se mantiene cerca de sp3, mientras que para el grafeno es sp2, los cambios de simetría tienen como consecuencia cambios en su comportamiento químico. Descubrimos que el dopaje con B o P (uno o dos átomos dopados) y la funcionalización con grupos -OH o -COOH (como en el óxido de grafeno), disminuye la energía de ionización en los cálculos de solvente con agua, lo que permite una donación de electrones más fácil. Por otro lado, el dopaje con átomos de N y la funcionalización con átomos de F aumenta la afinidad electrónica. Estos tipos de cambios mejoran la quimisorción o fisisorción por interacciones no covalentes e interacciones covalentes con moléculas pequeñas, principalmente en los átomos de carbono más cercanos al átomo dopado/funcionalizado
Resumen en inglés Allotropes of carbon such as graphene, graphane, fluorographene, doped graphene with N, B or P, graphene oxide, graphyne, and graphdiyne were studied through conceptual DFT reactivity descriptor indexes. To understand their chemical behavior and how they interact with different types of molecules, for instance, drugs (due to their potential use in drug carrier applications). This work shows the results of the changes in the global and local reactivity descriptor indexes and geometrical characteristics within the different graphene derivatives and rationalizes how they can interact with small molecules. Molecular hardness, the ionization energy, the electron affinity, electrodonating power index, and electroaccepting power indexes are the computed global reactivity descriptors. While, fukui functions, local softness, and molecular electrostatic potential are the local reactivity descriptors. The results suggest that the hybridization of carbons in the derivatives is kept close to sp3, while for graphene is sp2, the symmetry changes have as consequence changes in their chemical behavior. We found that doping with B or P (one or two atoms doped) and functionalizing with -OH or -COOH groups (as in graphene oxide), decreases the ionization energy in water solvent calculations, allowing for easier electron donation. On the other hand, doping with N atoms and functionalizing with F atoms increases the electron affinity. These types of changes enhance the chemisorption or physisorption by non-covalent interactions and covalent interactions with small molecules, principally, in the carbon atoms nearest to the doped/functionalized atom
Disciplinas: Química
Palabras clave: Química orgánica,
Grafeno,
Derivados,
Reactividad,
Estructura electrónica,
Teoría del funcional de la densidad (DFT)
Keyword: Organic chemistry,
Graphene,
Derivatives,
Reactivity,
Electronic structure,
Density functional theory (DFT)
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)