Understanding the complexity in low dimensional systems



Título del documento: Understanding the complexity in low dimensional systems
Revista: Journal of the Brazilian Society of Mechanical Sciences
Base de datos: PERIÓDICA
Número de sistema: 000312120
ISSN: 0100-7386
Autores: 1
Instituciones: 1Instituto Nacional de Pesquisas Espaciais, Laboratorio de Integracao e Testes, Sao Jose dos Campos, Sao Paulo. Brasil
Año:
Periodo: Nov
Volumen: 24
Número: 4
Paginación: 330-334
País: Brasil
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Teórico
Resumen en inglés Complex System is any system that presents involved behavior, and is hard to be modeled by using the reductionist approach of successive subdivision, searching for ''elementary'' constituents. Nature provides us with plenty of examples of these systems, in fields as diverse as biology, chemistry, geology, physics, and fluid mechanics, and engineering. What happens, in general, is that for these systems we have a situation where a large number of both attracting and unstable chaotic sets coexist. As a result, we can have a rich and varied dynamical behavior, where many competing behaviors coexist. In this work, we present and discuss simple mechanical systems that are nice paradigms of Complex System, when they are subjected to random external noise. We argue that systems with few degrees of freedom can present the same complex behavior under quite general conditions
Disciplinas: Física y astronomía,
Matemáticas
Palabras clave: Física,
Matemáticas puras,
Complejidad,
Caos,
Multiestabilidad
Keyword: Physics and astronomy,
Mathematics,
Physics,
Pure mathematics,
Complexity,
Chaos,
Multistability
Texto completo: Texto completo (Ver HTML)