Revista: | Journal of the Brazilian Society of Mechanical Sciences |
Base de datos: | PERIÓDICA |
Número de sistema: | 000312063 |
ISSN: | 0100-7386 |
Autores: | Fernandes, Sandro da Silva1 |
Instituciones: | 1Instituto Tecnologico de Aeronautica, Departamento de Matematica, Sao Jose dos Campos, Sao Paulo. Brasil |
Año: | 2001 |
Volumen: | 23 |
Número: | 2 |
Paginación: | 123-138 |
País: | Brasil |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico |
Resumen en inglés | Some properties of generalized canonical systems - special dynamical systems described by a Hamiltonian function linear in the adjoint variables - are applied in determining the solution of the two-dimensional coast-arc problem in an inverse-square gravity field. A complete closed-form solution for Lagrangian multipliers - adjoint variables - is obtained by means of such properties for elliptic, circular, parabolic and hyperbolic motions. Classic orbital elements are taken as constants of integration of this solution in the case of elliptic, parabolic and hyperbolic motions. For circular motion, a set of nonsingular orbital elements is introduced as constants of integration in order to eliminate the singularity of the solution |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas puras, Lagrange, Multiplicadores, Trayectorias, Optimización, Orbitas |
Keyword: | Mathematics, Pure mathematics, Lagrange, Multipliers, Trajectories, Optimization, Orbits |
Texto completo: | Texto completo (Ver HTML) |