Revista: | Journal of applied research and technology |
Base de datos: | PERIÓDICA |
Número de sistema: | 000384255 |
ISSN: | 1665-6423 |
Autores: | Ding, Y.R1 Cai, Y.J2 Sun, P.D3 Chen, B4 |
Instituciones: | 1Jiang Nan University, Department of Computer Science and Technology, Wuxi, Jiangsu. China 2Jiang Nan University, School of Biotechnology, Wuxi, Jiangsu. China 3Jiang Nan University, School of Chemical and Material Engineering, Wuxi, Jiangsu. China 4Environmental Monitoring Station of Binhu District, Wuxi, Jiangsu. China |
Año: | 2014 |
Periodo: | Jun |
Volumen: | 12 |
Número: | 3 |
Paginación: | 493-499 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Experimental, aplicado |
Resumen en inglés | To effectively control and treat river water pollution, it is very critical to establish a water quality prediction system. Combined Principal Component Analysis (PCA), Genetic Algorithm (GA) and Back Propagation Neural Network (BPNN), a hybrid intelligent algorithm is designed to predict river water quality. Firstly, PCA is used to reduce data dimensionality. 23 water quality index factors can be compressed into 15 aggregative indices. PCA improved effectively the training speed of follow-up algorithms. Then, GA optimizes the parameters of BPNN. The average prediction rates of non-polluted and polluted water quality are 88.9% and 93.1% respectively, the global prediction rate is approximately 91%. The water quality prediction system based on the combination of Neural Networks and Genetic Algorithms can accurately predict water quality and provide useful support for realtime early warning systems |
Disciplinas: | Ingeniería, Geociencias |
Palabras clave: | Ingeniería ambiental, Hidrología, Ríos, Calidad del agua, Análisis de componentes principales, Algoritmos genéticos |
Keyword: | Engineering, Earth sciences, Environmental engineering, Hydrology, Rivers, Water quality, Principal component analysis, Genetic algorithms |
Texto completo: | Texto completo (Ver HTML) |