Construction of an engineered alpha 1-antitrypsin with inhibitory activity based on theoretical studies



Título del documento: Construction of an engineered alpha 1-antitrypsin with inhibitory activity based on theoretical studies
Revista: Electronic journal of biotechnology
Base de datos: PERIÓDICA
Número de sistema: 000358467
ISSN: 0717-3458
Autores: 1
2
1
1
1
Instituciones: 1University of Guilan, Faculty of Science, Rasht. Irán
2Tarbiat Modares University, Faculty of Biological Sciences, Teherán. Irán
Año:
Volumen: 15
Número: 2
País: Chile
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Experimental, aplicado
Resumen en inglés Background: The elastase inhibitor α-1-antitrypsin (AAT), is a member of the serpin superfamily of protease inhibitors. AAT has a characteristic secondary structure of three-β-sheets, nine-α-helices and a reactive central loop (RCL). This protein inhibits target proteases by forming a stable complex in which the cleaved RCL is inserted into β-sheet-A of the serpin, leading to a conformational change in the AAT protein. Spontaneous polymerization and instability of AAT are challenges with regard to producing drugs against AAT-deficient diseases. Therefore, the purpose of many investigations currently is to produce drugs with lower degrees of polymerization and higher stabilities. In order to investigate the effect of the N-terminal segment (residues 1-43) on AAT structure, molecular dynamic (MD) simulation was used to study structural properties including Root-mean-square deviation (RMSD), internal motions, intramolecular non-bonded interactions and the total accessible surface area (ASA) of native and reduced AAT. These properties were compared in native and truncated AAT. Results: Theoretical studies showed no noticeable differences in the dynamic and structural properties of the two structures. These findings provided the basis for the experimental phase of the study in which sequences from the two AAT constructs were inserted into the expression vector pGAPZ and transformed into Pichia pastoris. Results showed no differences in the activities and polymerization of the two AAT constructs. Conclusions: As small-scale medicines are preferred by lung drug delivery systems, in this study AAT was designed and constructed by decreasing the number of amino acids at the N-terminal region
Disciplinas: Química
Palabras clave: Bioquímica,
Biotecnología,
Inhibidores proteicos,
Síntesis química,
Alfa 1-antitripsina,
Elastasa,
Simulación molecular
Keyword: Chemistry,
Biochemistry,
Biotechnology,
Protein inhibitors,
Chemical synthesis,
Alpha 1-antitrypsin,
Elastase,
Molecular simulation
Texto completo: Texto completo (Ver HTML)