Revista: | Ecletica quimica |
Base de datos: | |
Número de sistema: | 000552821 |
ISSN: | 0100-4670 |
Autores: | Anzanello, Michel José1 |
Instituciones: | 1Universidade Federal do Rio Grande do Sul, Departamento de Engenharia de Produção e Transportes, Porto Alegre, Rio Grande do Sul. Brasil |
Año: | 2011 |
Volumen: | 36 |
Número: | 4 |
Paginación: | 28-33 |
País: | Brasil |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Resumen en inglés | This paper presents a method to select the best variables to categorize chemical samples into two classes, say conforming or non-conforming. For that matter, PLS regression is combined with a data mining tool, the k-Nearest Neighbor classification technique, through an iterative variable selection process. The recommended subset of variables is chosen based on several criteria: sensitivity, specificity and percent of retained variables. When applied to two datasets related to wine analysis and one associated to QSAR, the proposed method significantly reduced the number of variables required for classification, while yielding superior categorization performance when compared to using all original variables. |
Disciplinas: | Química |
Palabras clave: | Química industrial |
Keyword: | Industrial chemistry |
Texto completo: | Texto completo (Ver PDF) |