WIFROWAN: Wrapped Imbalanced Fuzzy-Rough Ordered Weighted Average Nearest Neighbor Classification



Título del documento: WIFROWAN: Wrapped Imbalanced Fuzzy-Rough Ordered Weighted Average Nearest Neighbor Classification
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000560517
ISSN: 1405-5546
Autores: 1
1
Instituciones: 1University of Camagüey, Department of Computer Science, Camaguey. Cuba
Año:
Periodo: Jul-Sep
Volumen: 24
Número: 3
Paginación: 957-968
País: México
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés In this paper we propose an ensemble method based on IFROWANN (Imbalanced Fuzzy-Rough Ordered Weighted Average Nearest Neighbor) algorithm to classify problems with imbalanced data. The ensemble generates many classifiers with different weight strategy and indiscernibility fuzzy relations. Classification is carried out selecting one of three strategies: I- to classify the new instance with the algorithm with best AUC in training. II- to average the memberships of the instance to the fuzzy-rough lower and upper approximation of each class given by the classifiers with best AUC. III- to average the memberships of the instance to the fuzzy-rough lower and upper approximation of each class of the all classifiers. Our method is validated by an extensive experimental study, showing statistically better results than 14 other state-of-the-art methods.
Disciplinas: Ciencias de la computación
Palabras clave: Procesamiento de datos
Keyword: Ensemble,
Imbalanced classification,
Fuzzy-rough sets,
Data processing
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)