The Impact of Key Ideas on Automatic Deception Detection in Text



Título del documento: The Impact of Key Ideas on Automatic Deception Detection in Text
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000560518
ISSN: 1405-5546
Autores: 1
2
2
2
Instituciones: 1Consejo Nacional de Ciencia y Tecnología, Ciudad de México. México
2Universidad Autónoma del Estado de México, Toluca, Estado de México. México
Año:
Periodo: Jul-Sep
Volumen: 24
Número: 3
Paginación: 1229-1239
País: México
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés In recent years, with the rise of the Internet, the automatic deception detection in text is an important task to recognize those of documents that try to make people believe in something false. Current studies in this field assume that the entire document contains cues to identify deception; however, as demonstrated in this work, some irrelevant ideas in text could affect the performance of the classification. Therefore, this research proposes an approach for deception detection in text that identifies, in the first instance, key ideas in a document based on a topic modeling algorithm and a proposed automatic extractive text summarization method, to produce a synthesized document that avoids secondary ideas. The experimental results of this study indicate that the proposed method outperform previous methods with standard collections.
Disciplinas: Ciencias de la computación
Palabras clave: Inteligencia artificial
Keyword: Clustering algorithms,
Topic modeling,
Genetic algorithms,
Deep learning,
Artificial intelligence
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)