Revista: | Computación y sistemas |
Base de datos: | |
Número de sistema: | 000560150 |
ISSN: | 1405-5546 |
Autores: | Barragán, Abraham1 Hernández, Lidia1 Todorov, Maxim2 |
Instituciones: | 1Benemérita Universidad Autónoma de Puebla, Puebla. México 2Universidad de las Américas Puebla, Cholula, Puebla. México |
Año: | 2018 |
Periodo: | Abr-Jun |
Volumen: | 22 |
Número: | 2 |
Paginación: | 315-329 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Resumen en inglés | Different partitions of the parameter space of all linear semi-infinite programming problems with a fixed compact set of indices and continuous right and left hand side coefficients have been considered in this paper. The optimization problems are classified in a different manner, e.g., consistent and inconsistent, solvable (with bounded optimal value and nonempty optimal set), unsolvable (with bounded optimal value and empty optimal set) and unbounded (with infinite optimal value). The classification we propose generates a partition of the parameter space, called second general primal-dual partition. We characterize each cell of the partition by means of necessary and sufficient, and in some cases only necessary or sufficient conditions, assuring that the pair of problems (primal and dual), belongs to that cell. In addition, we show non emptiness of each cell of the partition and with plenty of examples we demonstrate that some of the conditions are only necessary or sufficient. Finally, we investigate various questions of stability of the presented partition. |
Disciplinas: | Ciencias de la computación |
Palabras clave: | Programación, Condiciones de acotamiento, Espacio de parámetros, Partición primal-dual, Problemas de optimización, Lineal programming, Propiedades de estabilidad |
Keyword: | Consistency conditions, Parameter space, Primal-dual partition, Stability properties, Programming, Optimization problems, Programación lineal |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |