Revista: | Computación y sistemas |
Base de datos: | |
Número de sistema: | 000560785 |
ISSN: | 1405-5546 |
Autores: | Neri Mendoza, Verónica1 Ledeneva, Yulia1 García Hernández, René Arnulfo1 Hernández Castañeda, Ángel1 |
Instituciones: | 1Universidad Autónoma del Estado de México, Toluca, Estado de México. México |
Año: | 2023 |
Periodo: | Ene-Mar |
Volumen: | 27 |
Número: | 1 |
Paginación: | 269-279 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Resumen en inglés | In this paper, we addressed the generic and update text summarization tasks of a set of documents as a combinatorial optimization problem through a genetic algorithm and unsupervised textual features. Particularly under the news domain, input documents are a set of articles of varying sizes covering the same event. The main advantage of the proposed method is that it is language-independent. The experimental results demonstrated that the method performs well for both kinds of summarization. Moreover, we calculated the heuristics for update text summarization like a benchmark to compare state-of-the-art methods. |
Disciplinas: | Ciencias de la computación, Ciencias de la computación |
Palabras clave: | Procesamiento de datos, Inteligencia artificial |
Keyword: | Data processing, Artificial intelligence |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |