Generic and Update Multi-Document Text Summarization based on Genetic Algorithm



Título del documento: Generic and Update Multi-Document Text Summarization based on Genetic Algorithm
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000560785
ISSN: 1405-5546
Autores: 1
1
1
1
Instituciones: 1Universidad Autónoma del Estado de México, Toluca, Estado de México. México
Año:
Periodo: Ene-Mar
Volumen: 27
Número: 1
Paginación: 269-279
País: México
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés In this paper, we addressed the generic and update text summarization tasks of a set of documents as a combinatorial optimization problem through a genetic algorithm and unsupervised textual features. Particularly under the news domain, input documents are a set of articles of varying sizes covering the same event. The main advantage of the proposed method is that it is language-independent. The experimental results demonstrated that the method performs well for both kinds of summarization. Moreover, we calculated the heuristics for update text summarization like a benchmark to compare state-of-the-art methods.
Disciplinas: Ciencias de la computación,
Ciencias de la computación
Palabras clave: Procesamiento de datos,
Inteligencia artificial
Keyword: Data processing,
Artificial intelligence
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)