Enhancing Deep Learning Gender Identification with Gated Recurrent Units Architecture in Social Text



Título del documento: Enhancing Deep Learning Gender Identification with Gated Recurrent Units Architecture in Social Text
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000560366
ISSN: 1405-5546
Autores: 1
1
Instituciones: 1University of Monastir, LATICE Laboratory Research Department of Computer Science, Monastir. Túnez
Año:
Periodo: Jul-Sep
Volumen: 22
Número: 3
Paginación: 757-766
País: México
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés Author profiling consists in inferring the authors’ gender, age, native language, dialects or personality by examining his/her written text. This paper represent an extension of the recursive neural network that employs a variant of the Gated Recurrent Units (GRUs) architecture. Our study focuses on gender identification based on Arabic Twitter and Facebook texts by investigating the examined texts features. The introduced exploiting a model that applies a mixture of unsupervised and supervised techniques to learn word vectors capturing the words syntactic and semantic. We applied our approach on two corpora of two social media varieties: twitter texts, in which each author is assigned at least 100 tweets, and Facebook corpus containing short texts with an average of 15.77 words per author. The obtained experimental results are comparable to the best findings provided by the best per-forming systems presented in PAN Lab at CLEF 2017.
Disciplinas: Ciencias de la computación
Palabras clave: Inteligencia artificial,
Detección,
Género,
Redes,
Autores,
Aprendizaje profundo,
Twitter,
Facebook
Keyword: Detection,
Gender,
Networks,
Deep learning,
Twitter,
Facebook,
Artificial intelligence,
Authors
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)