Depth Map Building and Enhancement using a Monocular Camera, Shape Priors and Variational Methods



Título del documento: Depth Map Building and Enhancement using a Monocular Camera, Shape Priors and Variational Methods
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000560491
ISSN: 1405-5546
Autores: 1
2
2
1
Instituciones: 1Universidad del Valle, Cali, Valle del Cauca. Colombia
2Intel Corporation, Santa Clara, California. Estados Unidos de América
Año:
Periodo: Abr-Jun
Volumen: 24
Número: 2
Paginación: 781-796
País: México
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés We present a monocular system that uses shape priors for improving the quality of estimated depth maps, specially in the region of an object of interest, when the environment presents complex conditions like changes in light, with low-textured, very reflective and translucent objects. A depth map is built by solving a non-convex optimization problem using the primal-dual algorithm and a coupling term. The energy functional consists of a photometric term for a set of images with common elements in the scene and a regularization term that allows smooth solutions. The camera is moved by hand and tracked using ORB-SLAM2. The resulting depth map is enhanced by integrating, with a novel variational formulation, depth data coming from the 3D model that best fits to observed data, optimized w.r.t. shape, pose and scale (shape prior). We also present an alternative algorithm that simultaneously builds a depth map and integrates a previously estimated shape prior. We quantify the improvements in accuracy and in noise reduction of the final depth map.
Disciplinas: Ciencias de la computación
Palabras clave: Procesamiento de datos
Keyword: Dense mapping,
Shape priors,
Variational methods,
Primal-dual algorithm,
Depth integration,
Depth denoising,
Data processing
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)