Automatic Selection of Multi-view Learning Techniques and Views for Pattern Recognition in Electroencephalogram Signals



Título del documento: Automatic Selection of Multi-view Learning Techniques and Views for Pattern Recognition in Electroencephalogram Signals
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000560772
ISSN: 1405-5546
Autores: 1
1
1
1
Instituciones: 1Instituto Nacional de Astrofísica, Optica y Electrónica, Coordinación de Ciencias Computacionales, Tonantzintla, Puebla. México
Año:
Periodo: Ene-Mar
Volumen: 27
Número: 1
Paginación: 211-221
País: México
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés The present work explores six different Multi-view learning (MVL) techniques for the classification of electroencephalogram (EEG) signals in order to take advantage of complementary descriptive information from different representations of the same object. We worked with four views of EEG signals extracted by applying two different feature extraction methods in time domain and two in the frequency domain. We propose a model for automatic selection of view combination, using the total number of views, then three views and finally two views with each MVL approach explored, based on classification performance. The classification accuracy achieved by the Multi-view learning approach and the subset of views selected by our model exceeds the results achieved in single view works where the same databases are used for pattern recognition in EEG signals.
Disciplinas: Ciencias de la computación
Palabras clave: Procesamiento de datos
Keyword: Data processing
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)