Revista: | Computación y sistemas |
Base de datos: | |
Número de sistema: | 000560350 |
ISSN: | 1405-5546 |
Autores: | Mahmoud, Adnen1 Zrigui, Mounir1 |
Instituciones: | 1University of Tunis, LaTICE Laboratory, Túnez. Túnez |
Año: | 2018 |
Periodo: | Jul-Sep |
Volumen: | 22 |
Número: | 3 |
Paginación: | 767-776 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Resumen en inglés | Plagiarism in textual documents is a widespread problem seen the large digital repository existing on the web. Moreover, it is difficult to make evaluation and comparison between solutions because of the lack of plagiarized resources in Arabic language publicly available. In this context, this paper describes automatic construction of a paraphrased corpus in order to deal with these issues and conduct our experiments, as follows: First, we collected a large corpus containing more than 12 million sentences from different resources. Then, we cleaned it up unnecessary data by applying a set of preprocessing techniques. After that, we used word2vec algorithm to create a vocabulary from the collected corpus. It extracted efficiently the semantic relationships between words to exploit. Subsequently, we replaced each word of the source corpus with the most similar vocabulary word based on an index used randomly to eventually obtain a suspect corpus. Different experiments are done. Thus, we varied the dimensions of vectors and window sizes to predict the correct context of words and identify the semantically closest words of the target. |
Disciplinas: | Ciencias de la computación |
Palabras clave: | Inteligencia artificial, Corpus, Lengua árabe, Recopilación de datos, Plagio, Análisis semántico, Incrustación, Palabras, Paráfrasis, Procesamiento de lenguaje natural |
Keyword: | Corpus, Words, Arabic language, Data collection, Paraphrase, Plagiarism, Semantic analysis, Artificial intelligence, Embedding, Natural language processing |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |