Revista: | Revista mexicana de física |
Base de datos: | PERIÓDICA |
Número de sistema: | 000460541 |
ISSN: | 0035-001X |
Autores: | Pérez Román, I1 Rosu, H.C1 |
Instituciones: | 1Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí. México |
Año: | 2022 |
Periodo: | Nov-Dic |
Volumen: | 68 |
Número: | 6 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico, teórico |
Resumen en inglés | We investigate the kinematics of the motion of an observer with constant proper acceleration (relativistic hyperbolic motion) in 1 + 1 and 1 + 3 dimensional Minkowski spacetimes. We provide explicit formulas for all the kinematic quantities up to the fourth proper time derivative (the Snap). In the 1 + 3 case, following a recent work of Pons and de Palol [Gen. Rel. Grav. 51 (2019) 80], a vectorial differential equation for the acceleration is obtained which by considering constant proper acceleration is turned into a nonlinear second order differential equation in terms of derivatives of the radius vector. If, furthermore, the velocity is parameterized in terms of hyperbolic functions, one obtains a differential equation to solve for the argument f(s) of the velocity. Differently from Pons and de Palol, who employed the particular solution, linear in the proper time s, we obtain the general solution and use it to work out more general expressions for the kinematical quantities. As a byproduct, we obtain a class of modified Rindler hyperbolic worldlines characterized by supplementary contributions to the components of the kinematical quantities |
Disciplinas: | Física y astronomía |
Palabras clave: | Física, Movimiento hiperbólico, Jerk, Snap, Espacio-tiempo de Minkowski, Hipérbolas de Rindler modificadas |
Keyword: | Physics, Hyperbolic motion, Jerk, Snap, Minkowski spacetime, Modified Rindler hyperbolas |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |