Radial solution of Schrödinger equation with Hulthen-Yukawa-Inverse quadratic potential in a Point-Like defect under AB-flux field



Título del documento: Radial solution of Schrödinger equation with Hulthen-Yukawa-Inverse quadratic potential in a Point-Like defect under AB-flux field
Revista: Revista mexicana de física
Base de datos:
Número de sistema: 000592448
ISSN: 0035-001X
Autores: 1
Instituciones: 1University of Science & Technology Meghalaya, Department of Physics, Meghalaya. India
Año:
Periodo: May-Jun
Volumen: 69
Número: 3
País: México
Idioma: Inglés
Resumen en inglés In this paper, we determine the approximate eigenvalue solution of the non-relativistic wave equation in the presence of the Aharonov-Bohm flux field with Hulthen-Yukawa-Inverse Quadratic potential in a topological defect via point-like global monopole (PGM) geometry. We use the Greene-Aldrich improved approximation scheme into the centrifugal and reciprocal terms appear in the radial Schrödinger equation. We then solve this radial equation using the parametric Nikiforov-Uvarov method and analyze the effects on the eigenvalue solution. We see that the energy levels and the radial wave functions get modified by the topological defect of a point-like global monopole and the magnetic flux field that shows an analogue of the Aharonov-Bohm effect for the bound state. Finally, we utilize the eigenvalue solution to some potential models, such as Hulthen potential, Hulthen plus Yukawa potential, and Hulthen plus inverse quadratic potential and discuss the results.
Keyword: Topological defect,
Non-relativistic wave equation,
Solutions of wave equations: bound state,
Geometric quantum phase,
Special function,
Interaction potential
Texto completo: Texto completo (Ver PDF) Texto completo (Ver HTML)