Modulation of argon pressure as an option to control transmittance and resistivity of ZnO:Al films deposited by DC magnetron sputtering: on the dark yellow films at 10-7 Torr base pressures



Título del documento: Modulation of argon pressure as an option to control transmittance and resistivity of ZnO:Al films deposited by DC magnetron sputtering: on the dark yellow films at 10-7 Torr base pressures
Revista: Revista mexicana de física
Base de datos: PERIÓDICA
Número de sistema: 000460955
ISSN: 0035-001X
Autors: 1
2
2
2
2
2
2
3
4
4
Institucions: 1Universidad de Sonora, Departamento de Ingeniería Química y Metalurgia, Hermosillo, Sonora. México
2SMARTER-Lab Nucleus for Research & Divulgation, A.C., Hermosillo, Sonora. México
3Universidad de Sonora, Departamento de Investigación en Polímeros y Materiales, Hermosillo, Sonora. México
4Universidad de Barcelona, Departamento de Física Aplicada, Barcelona. España
Any:
Període: Nov-Dic
Volum: 64
Número: 6
Paginació: 566-576
País: México
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico, teórico
Resumen en inglés In a previous paper, we reported that thin films of ZnO:Al [aluminum-zinc oxide (AZO)] deposited after achieving a very low base pressure [from 4.0 × 10 - 7 Torr ( 5.6 × 10 - 5 Pa) to 5.7 × 10 - 7 Torr ( 7.6 × 10 - 5 Pa)] result dark yellow in color and are resistive. These are undesirable characteristics for the application of AZO thin films as front electrodes in solar cells. However, given the increasingly tendency in the acquisition of equipment that allows us to reach excellent vacuum levels, it is necessary to find the deposition conditions that lead to an improving of transmittance without greatly impacting the electrical properties of materials deposited after achieving these levels of vacuum. In this way, the present work is focused on AZO thin films deposited after achieving a very low base pressure value: 4.2 × 10 - 7 Torr ( 5.6 × 10 - 5 Pa). For this, we studied the effect of the variation of the oxygen volume percent in the argon/oxygen mixture (by maintaining the deposition pressure constant) and the effect of deposition pressure with only argon gas on the main properties of AZO thin films. The depositions were done at room temperature on glass substrates by direct-current magnetron sputtering with a power of 120 W (corresponding to a power density of 2.63 W/cm2). As a result, we found that the variation of deposition pressure with only argon gas is a good option for the control of optical and electrical properties, since the addition of oxygen, although improves transmittance, greatly impacts on the electrical properties. Furthermore, an interesting correlation was found between the optical and electrical properties and the chemical composition of the AZO films, the latter depending on the argon pressure (for this, a careful X-ray photoelectron spectroscopy analysis was performed). Also, the inverse relationship between crystallinity and deposition rate was confirmed, in which deposition rate inversely depends on
Disciplines Física y astronomía
Paraules clau: Física,
Oxido de zinc,
Oxido conductor transparente,
Deposición por pulverización catódica,
Transmitancia óptica,
Resistividad eléctrica
Keyword: Physics,
Zinc oxide,
Transparent conductive oxide,
Sputter deposition,
Optical transmittance,
Electrical resistivity
Text complet: Texto completo (Ver HTML) Texto completo (Ver PDF)