Local quantum uncertainty as a robust metric to characterize discord-like quantum correlations in subsets of the chromophores in photosynthetic light-harvesting complexes



Título del documento: Local quantum uncertainty as a robust metric to characterize discord-like quantum correlations in subsets of the chromophores in photosynthetic light-harvesting complexes
Revista: Revista mexicana de física
Base de datos: PERIÓDICA
Número de sistema: 000453945
ISSN: 0035-001X
Autors: 1
2
Institucions: 1Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California. México
2Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Ensenada, Baja California. México
Any:
Període: Jul-Ago
Volum: 66
Número: 4
Paginació: 525-537
País: México
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico, teórico
Resumen en inglés Green sulfur bacteria is a photosynthetic organism whose light-harvesting complex accommodates a pigment-protein complex called Fenna-Matthews-Olson (FMO). The FMO complex sustains quantum coherence and quantum correlations between the electronic states of 7 separated chromophores as energy moves with nearly a 100% quantum efficiency to the reaction center. We present a method based on the quantum uncertainty associated to local measurements to quantify discord-like quantum correlations between two subsystems where one is a qubit and the other is a qudit. We implement the method by calculating local quantum uncertainty (LQU), concurrence, and coherence between subsystems of pure and mixed states represented by the eigenstates and by the thermal equilibrium state determined by the FMO Hamiltonian. Three partitions of the seven chromophores network define the subsystems: one chromophore with six chromophores, pairs of chromophores, and one chromophore with two chromophores. The robustness of the LQU method allows quantification of quantum correlations that had not been studied before, identification of the strongest correlations in qubits networks , and a possible implementation in dynamical models to study efficient energy transport pathways. Finally, we take the LQU of the most quantum correlated subsets of chromophores as the signature of the non-classicity of the system to study physical properties such as populations, energy fluctuations, and specific heat. We find that a Schottky-like anomaly in the specific heat identifies the availability of energy levels, which in turn define the relation between a measurable macroscopic magnitude and non-classical resources
Disciplines Física y astronomía
Paraules clau: Física,
Proteína FMO,
Incertidumbre cuántica local,
Correlaciones cuánticas
Keyword: Physics,
FMO protein,
Local quantum uncertainty,
Quantum correlations
Text complet: Texto completo (Ver HTML) Texto completo (Ver PDF)