Revista: | Proyecciones (Antofagasta) |
Base de datos: | PERIÓDICA |
Número de sistema: | 000405936 |
ISSN: | 0716-0917 |
Autores: | Lourdusamy, A1 Patrick, F1 |
Instituciones: | 1St. Xavier's College, Department of Mathematics, Tirunelveli, Tamil Nadu. India |
Año: | 2016 |
Periodo: | Mar |
Volumen: | 35 |
Número: | 1 |
Paginación: | 119-136 |
País: | Chile |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico |
Resumen en inglés | A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V (G) to {1, 2, ··· , |V (G)|} such that an edge uv is assigned the label 1 if 2 divides f(u) + f(v) and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a sum divisor cordial labeling is called a sum divisor cordial graph. In this paper, we prove that path, comb, star, complete bipartite, K2 + mK1, bistar, jewel, crown, flower, gear, subdivision of the star, K1,3 ∗ K1,n and square graph of Bn,n are sum divisor cordial graphs |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas puras, Combinatoria, Teoría de gráficas, Etiquetado |
Keyword: | Mathematics, Pure mathematics, Combinatorics, Graph theory, Labelling |
Texto completo: | Texto completo (Ver PDF) |