Sum divisor cordial graphs



Título del documento: Sum divisor cordial graphs
Revista: Proyecciones (Antofagasta)
Base de datos: PERIÓDICA
Número de sistema: 000405936
ISSN: 0716-0917
Autores: 1
1
Instituciones: 1St. Xavier's College, Department of Mathematics, Tirunelveli, Tamil Nadu. India
Año:
Periodo: Mar
Volumen: 35
Número: 1
Paginación: 119-136
País: Chile
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico
Resumen en inglés A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V (G) to {1, 2, ··· , |V (G)|} such that an edge uv is assigned the label 1 if 2 divides f(u) + f(v) and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a sum divisor cordial labeling is called a sum divisor cordial graph. In this paper, we prove that path, comb, star, complete bipartite, K2 + mK1, bistar, jewel, crown, flower, gear, subdivision of the star, K1,3 ∗ K1,n and square graph of Bn,n are sum divisor cordial graphs
Disciplinas: Matemáticas
Palabras clave: Matemáticas puras,
Combinatoria,
Teoría de gráficas,
Etiquetado
Keyword: Mathematics,
Pure mathematics,
Combinatorics,
Graph theory,
Labelling
Texto completo: Texto completo (Ver PDF)