One modulo three mean labeling of transformed trees



Título del documento: One modulo three mean labeling of transformed trees
Revista: Proyecciones (Antofagasta)
Base de datos: PERIÓDICA
Número de sistema: 000406112
ISSN: 0716-0917
Autores: 1
2
2
Instituciones: 1Govindammal Aditanar College for Women, Department of Mathematics, Thoothukudi, Tamil Nadu. India
2Kamaraj College of Engineering and Technology, Department of Mathematics, Virudhunagar, Tamil Nadu. India
Año:
Periodo: Sep
Volumen: 35
Número: 3
Paginación: 277-289
País: Chile
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico
Resumen en inglés A graph G is said to be one modulo three mean graph if there is an injective function φ from the vertex set of G to the set {a|0 ≤ a ≤ 3q− 2 and either a ≡ 0(mod 3) or a ≡ 1(mod 3)} where q is the number of edges G and φ induces a bijection φ∗ from the edge set of G to {a|1 ≤ a ≤ 3q − 2 and either a ≡ 1(mod 3)} given by φ∗(uv) = lφ(u)+φ(v) 2 m and the function φ is called one modulo three mean labeling of G. In this paper, we prove that the graphs T ¯Kn, ToKˆ 1,n, ToPˆ n and Toˆ2Pn are one modulo three mean graphs
Disciplinas: Matemáticas
Palabras clave: Matemáticas aplicadas,
Matemáticas puras,
Combinatoria,
Teoría de gráficas,
Etiquetado,
Arboles
Keyword: Mathematics,
Applied mathematics,
Pure mathematics,
Combinatorics,
Graph theory,
Labelling,
Trees
Texto completo: Texto completo (Ver PDF)