Data Reduction and Regression Using Principal Component Analysis in Qualitative Spatial Reasoning and Health Informatics



Título del documento: Data Reduction and Regression Using Principal Component Analysis in Qualitative Spatial Reasoning and Health Informatics
Revista: Polibits
Base de datos: PERIÓDICA
Número de sistema: 000402941
ISSN: 1870-9044
Autores: 1
2
Instituciones: 1Missouri University of Science and Technology, Rolla, Misuri. Estados Unidos de América
2Amazon Inc., San Luis Obispo, California. Estados Unidos de América
Año:
Periodo: Ene-Jun
Número: 53
Paginación: 31-42
País: México
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico
Resumen en inglés The central idea of principal component analysis (PCA) is to reduce the dimensionality of a dataset consisting of a large number of interrelated variables, while retaining as much as possible of the variation present in the dataset. In this paper, we use PCA based algorithms in two diverse genres, qualitative spatial reasoning (QSR) to achieve lossless data reduction and health informatics to achieve data reduction along with improved regression analysis respectively. In an adaptive hybrid approach, we have employed PCA to traditional regression algorithms to improve their performance and representation. This yields prediction models that have both a better fit and reduced number of attributes than those produced by using standard logistic regression alone. We present examples using both synthetic data and real health datasets from UCI Repository
Disciplinas: Ciencias de la computación,
Matemáticas,
Bibliotecología y ciencia de la información
Palabras clave: Procesamiento de datos,
Matemáticas aplicadas,
Tecnología de la información,
Estadística,
Análisis de componentes principales,
Biomedicina,
Informática biomédica,
Reducción de datos
Keyword: Computer science,
Mathematics,
Library and information science,
Data processing,
Applied mathematics,
Information technology,
Statistics,
Principal component analysis,
Biomedicine,
Health informatics,
Data reduction
Texto completo: Texto completo (Ver PDF)