An Approach for identifying Crops Types using UAV Images in the Ecuadorian Sierra



Título del documento: An Approach for identifying Crops Types using UAV Images in the Ecuadorian Sierra
Revista: Latin-American Journal of Computing (LAJC)
Base de datos:
Número de sistema: 000565123
ISSN: 1390-9134
Autores: 1
1
2
Instituciones: 1Universidad de Palermo, Buenos Aires. Argentina
2Universidad de Cuenca, Cuenca, Azuay. Ecuador
Año:
Volumen: 6
Número: 2
Paginación: 23-30
País: Ecuador
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés Spectral signature analysis allows identification of the different types of terrestrial objects and characterizes behaviour of different kinds of vegetation. In Ecuador usually phenological analysis (state of vegetal growing) and crop type are based on acquired manually information. This does not allow taking agile decisions over crops management. The advantages for using UAV images propose a significant change to the current methodologies. This paper presented a correlation study of crop spectral signature using multispectral images from a UAV. Ecuadorian Sierra was the study zone to differentiate the types of crops in an agricultural field. The Inception algorithm of Tensorflow was chosen to generate a crop layer and to predict the crop type with the closest possible approximation from an image.
Disciplinas: Ciencias de la computación,
Ciencias de la computación
Palabras clave: Inteligencia artificial,
Procesamiento de datos
Keyword: Artificial intelligence,
Data processing
Texto completo: Texto completo (Ver PDF)