Detection of Horizontal Two-Phase Flow Patterns Through a Neural Network Model



Título del documento: Detection of Horizontal Two-Phase Flow Patterns Through a Neural Network Model
Revista: Journal of the Brazilian Society of Mechanical Sciences
Base de datos: PERIÓDICA
Número de sistema: 000312133
ISSN: 0100-7386
Autores: 1

2
Instituciones: 1Universidade de Sao Paulo, Sao Carlos, Sao Paulo. Brasil
2Commissariat a l'Energie Atomique et aux Energies Alternatives, Grenoble, Isere. Francia
Año:
Periodo: Mar
Volumen: 24
Número: 1
Paginación: 70-75
País: Brasil
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Experimental
Resumen en inglés One of the main problems related to the transport and manipulation of multiphase fluids concerns the existence of characteristic flow patterns and its strong influence on important operation parameters. A good example of this occurs in gas-liquid chemical reactors in which maximum efficiencies can be achieved by maintaining a finely dispersed bubbly flow to maximize the total interfacial area. Thus, the ability to automatically detect flow patterns is of crucial importance, especially for the adequate operation of multiphase systems. This work describes the application of a neural model to process the signals delivered by a direct imaging probe to produce a diagnostic of the corresponding flow pattern. The neural model is constituted of six independent neural modules, each of which trained to detect one of the main horizontal flow patterns, and a last winner-take-all layer responsible for resolving when two or more patterns are simultaneously detected. Experimental signals representing different bubbly, intermittent, annular and stratified flow patterns were used to validate the neural model
Disciplinas: Física y astronomía,
Matemáticas
Palabras clave: Dinámica de fluidos,
Matemáticas aplicadas,
Flujo multifásico,
Patrones de flujo,
Redes neuronales,
Señales,
Análisis
Keyword: Physics and astronomy,
Mathematics,
Fluid dynamics,
Applied mathematics,
Multiphase flow,
Flow pattern,
Neural networks,
Signals,
Analysis
Texto completo: Texto completo (Ver HTML)