Covalidation of Integral Transforms and Method of Lines in Nonlinear Convection-Diffusion with Mathematica



Título del documento: Covalidation of Integral Transforms and Method of Lines in Nonlinear Convection-Diffusion with Mathematica
Revista: Journal of the Brazilian Society of Mechanical Sciences
Base de datos: PERIÓDICA
Número de sistema: 000312097
ISSN: 0100-7386
Autores: 1

Instituciones: 1Universidade Federal do Rio de Janeiro, Laboratorio de Transmissao e Tecnologia do Calor, Rio de Janeiro. Brasil
Año:
Volumen: 23
Número: 3
Paginación: 303-319
País: Brasil
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Aplicado
Resumen en inglés The Mathematica system (version 4.0) is employed in the solution of nonlinear difusion and convection-difusion problems, formulated as transient one-dimensional partial diferential equations with potential dependent equation coefficients. The Generalized Integral Transform Technique (GITT) is first implemented for the hybrid numerical-analytical solution of such classes of problems, through the symbolic integral transformation and elimination of the space variable, followed by the utilization of the built-in Mathematica function NDSolve for handling the resulting transformed ODE system. This approach ofers an error-controlled final numerical solution, through the simultaneous control of local errors in this reliable ODE's solver and of the proposed eigenfunction expansion truncation order. For covalidation purposes, the same built-in function NDSolve is employed in the direct solution of these partial diferential equations, as made possible by the algorithms implemented in Mathematica (versions 3.0 and up), based on application of the method of lines. Various numerical experiments are performed and relative merits of each approach are critically pointed out
Disciplinas: Matemáticas,
Ciencias de la computación
Palabras clave: Matemáticas puras,
Transformadas integrales,
Computación simbólica,
Mathematica,
Software,
Convección,
Difusión
Keyword: Mathematics,
Computer science,
Pure mathematics,
Integral transforms,
Symbolic computation,
Mathematica,
Software,
Convection,
Diffusion
Texto completo: Texto completo (Ver HTML)