Revista: | Journal of the Brazilian Society of Mechanical Sciences |
Base de datos: | PERIÓDICA |
Número de sistema: | 000312111 |
ISSN: | 0100-7386 |
Autores: | Fenili, A1 Balthazar, J.M2 Mook, D.T3 Weber, H. I4 |
Instituciones: | 1Instituto Nacional de Pesquisas Espaciais, Centro Tecnico Aeroespacial, Sao Jose dos Campos, Sao Paulo. Brasil 2Universidade Estadual Paulista "Julio de Mesquita Filho", Rio Claro, Sao Paulo. Brasil 3Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Estados Unidos de América 4Pontificia Universidade Catolica do Rio de Janeiro, Departamento de Engenharia Mecanica, Rio de Janeiro. Brasil |
Año: | 2002 |
Periodo: | Jul |
Volumen: | 24 |
Número: | 3 |
Paginación: | 239-250 |
País: | Brasil |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico |
Resumen en inglés | In this paper is Analyzed the local dynamical behavior of a slewing flexible structure considering nonlinear curvature. The dynamics of the original (nonlinear) governing equations of motion are reduced to the center manifold in the neighborhood of an equilibrium solution with the purpose of locally study the stability of the system. In this critical point, a Hopf bifurcation occurs. In this region, one can find values for the control parameter (structural damping coefficient) where the system is unstable and values where the system stability is assured (periodic motion). This local analysis of the system reduced to the center manifold assures the stable / unstable behavior of the original system around a known solution |
Disciplinas: | Ingeniería, Matemáticas |
Palabras clave: | Ingeniería de control, Matemáticas aplicadas, Rotación, Estabilidad, Equilibrio, Sistemas dinámicos, Estructuras, Curvatura, Sistemas no lineales |
Keyword: | Engineering, Mathematics, Control engineering, Applied mathematics, Rotation, Stability, Equilibrium, Dynamical systems, Structures, Curvature, Nonlinear systems |
Texto completo: | Texto completo (Ver HTML) |