Revista: | Journal of the Brazilian Society of Mechanical Sciences |
Base de datos: | PERIÓDICA |
Número de sistema: | 000312017 |
ISSN: | 0100-7386 |
Autores: | Faustini, Mário Carneiro1 Tsuzuki, Marcos Sales Guerra |
Instituciones: | 1Universidade de Sao Paulo, Escola Politecnica, Sao Carlos, Sao Paulo. Brasil |
Año: | 2000 |
Volumen: | 22 |
Número: | 2 |
Paginación: | 259-271 |
País: | Brasil |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico |
Resumen en inglés | The determination of the intersection curve between Bézier Surfaces may be seen as the composition of two separated problems: determining initial points and tracing the intersection curve from these points. The Bézier Surface is represented by a parametric function (polynomial with two variables) that maps a point in the tridimensional space from the bidimensional parametric space. In this article, it is proposed an algorithm to determine the initial points of the intersection curve of Bézier Surfaces, based on the solution of polynomial systems with the Projected Polyhedral Method, followed by a method for tracing the intersection curves (Marching Method with differential equations). In order to allow the use of the Projected Polyhedral Method, the equations of the system must be represented in terms of the Bernstein basis, and towards this goal it is proposed a robust and reliable algorithm to exactly transform a multivariable polynomial in terms of power basis to a polynomial written in terms of Bernstein basis |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas puras, Modelado geométrico, Superficies paramétricas, Curvas de intersección, Sistemas polinomiales multivariables |
Keyword: | Mathematics, Pure mathematics, Geometric modelling, Parametric surfaces, Intersection curves, Multivariable polynomial systems |
Texto completo: | Texto completo (Ver HTML) |