A Remark on the Heat Equation and Minimal Morse Functions on Tori and Spheres



Título del documento: A Remark on the Heat Equation and Minimal Morse Functions on Tori and Spheres
Revista: Ingeniería y ciencia
Base de datos: PERIÓDICA
Número de sistema: 000363139
ISSN: 1794-9165
Autores: 1
2
Instituciones: 1Universidad EAFIT, Medellín, Antioquia. Colombia
2Universidad Nacional de Colombia, Medellín, Antioquia. Colombia
Año:
Periodo: Ene-Jun
Volumen: 9
Número: 17
Paginación: 11-20
País: Colombia
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Experimental
Resumen en español Sea (M; g) una variedad riemanniana que es compacta, conexa y homogénea, es decir, tal que cada par de puntos p; q 2 M tienen vecindades isométricas. Este artículo constituye un primer paso en el estudio de qué tan general es el hecho de que para cada condición inicial “genérica” f0 en (M; g), la solución de @f=@t = gf; f( ; 0) = f0 es tal que para t suficientemente grande, f( ; t) es una función de Morse minimal, es decir, una función de Morse cuyo número total de puntos críticos es el mínimo posible en M. En este artículo se muestra que esto es cierto en el caso de toros planos y esferas redondas, de todas las dimensiones
Resumen en inglés Let (M; g) be a compact, connected riemannian manifold that is homogeneous, i.e. each pair of points p; q 2 M have isometric neighborhoods. This paper is a first step towards an understanding of the extent to which it is true that for each “generic” initial condition f0, the solution to @f=@t = gf; f( ; 0) = f0 is such that for sufficiently large t, f( ; t) is a minimal Morse function, i.e., a Morse function whose total number of critical points is the minimal possible on M. In this paper we show that this is true for flat tori and round spheres in all dimensions
Disciplinas: Física y astronomía,
Matemáticas
Palabras clave: Matemáticas puras,
Ecuación de calor,
Función de Morse,
Toro
Keyword: Physics and astronomy,
Mathematics,
Pure mathematics,
Heat equation,
Morse function,
Tori
Texto completo: Texto completo (Ver HTML)