Revista: | Ingeniería (Bogotá) |
Base de datos: | |
Número de sistema: | 000538041 |
ISSN: | 0121-750X |
Autores: | Patiño Chirva, Johana Andrea1 Daza Cruz, Yesica Xiomara1 López Santana, Eduyn Ramiro1 |
Instituciones: | 1Universidad Distrital Francisco José de Caldas, Facultad de Ingeniería, |
Año: | 2016 |
Periodo: | Ago |
Volumen: | 21 |
Número: | 2 |
Paginación: | 235-257 |
País: | Colombia |
Idioma: | Inglés |
Resumen en español | Contexto: La generación de residuos está causando profundos y negativos impactos en nuestro ambiente. Por esto, procesos relacionados con la recolección, el transporte, la transformación y la disposición final de residuos han ganado importancia y se propende a su eficiencia. Un modelo de programación entera mixta y de agrupación es propuesto para los procesos de recolección y transporte de residuos. Método: Se propone un modelo de optimización, inspirado en el contexto de Bogotá, cuyo objetivo es maximizar la cantidad de residuos recolectados teniendo en cuenta las características reales de esta actividad en la ciudad. Para instancias grandes en las que el costo computacional es muy alto, se proponen una alternativa de solución de dos etapas, clusterizar primero y rutear después. Resultados: En pequeñas instancias de hasta 1453 puntos de recolección agrupados en 13 bloques y 51 esquinas, nuestro modelo logró el cubrimiento total de la recolección. Para grandes instancias, existen variaciones entre los resultados de cada método de agrupación. Conclusiones: Nuestro modelo propuesto es capaz de encontrar una solución al problema de recolección de residuos en caso de Bogotá considerando la capacidad de los vehículos, la duración máxima de una jornada de trabajo y el horizonte de planificación de dos días de acuerdo con el proceso de recolección de Bogotá. Probamos tres métodos de agrupación para agrupar los sitios de recolecci ón y para reducir la complejidad del problema, y luego se resuelve el modelo usando un paquete comercial. Para instancias pequeñas, nuestro modelo es rápido, pero en grandes instancias se aumenta el tiempo de cálculo. Los trabajos futuros se centrarán en la búsqueda y validación de métodos con el propósito de encontrar aquel que tenga un mejor desempeño con el modelo propuesto. |
Resumen en inglés | Context: Waste generation is causing profound negative impacts on our natural environment. Because of that, processes related to waste collection, transportation, transformation and final disposal have increased its importance and major efficiencies are is desirable. We propose a Mixed Integer Programming model and clustering approach for waste collection and transportation process. Method: An optimization model, inspired on Bogotá context is proposed, to maximize the amount of waste collected, considering real-life aspects of this activity in the city. For large instances in which there is a big computational cost, we proposed an alternative solution of two stages, firstly a clustering step and then a routing step. Results: In small instances of up to 1453 collection sites grouped in 13 blocks and 51 corners, the model result in an overall collection covering of 100%. For large instances, there are variations between the results of each clustering method. The results suggests that the sweep algorithm is better to clustering the collection sites. Conclusions: Our proposed model is able to find a solution the waste collection problem in Bogota case considering the vehicle capacity, maximum workday duration and the planning horizon of two days according with the collection process in Bogota. We test three clustering methods in order to group the collection sites and to reduce the complexity of the problem, and then we solve the model using a commercial solver. For the small instances, our model run very fast but in the large in-stances the computational time was increased. Future work will focus in the validation and search of solution methods improving the performance with the proposed model. |
Palabras clave: | Clúster, Modelo de optimización, Ruteo, Programación de tareas, Recolección de residuos |
Keyword: | Clustering, Optimization model, Routing, Scheduling, Waste collection services |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |