Revista: | Computational & applied mathematics |
Base de datos: | PERIÓDICA |
Número de sistema: | 000268610 |
ISSN: | 1807-0302 |
Autores: | Iusem, Alfredo1 Seeger, Alberto2 |
Instituciones: | 1Instituto de Matematica Pura e Aplicada, Rio de Janeiro. Brasil 2Universite d'Avignon, Department of Mathematics, Avignon, Vaucluse. Francia |
Año: | 2005 |
Periodo: | May-Ago |
Volumen: | 24 |
Número: | 2 |
Paginación: | 245-283 |
País: | Brasil |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Experimental, analítico |
Resumen en inglés | Let C(H) denote the class of closed convex cones in a Hilbert space H. One possible way of measuring the degree of pointedness of a cone K is by evaluating the distance from K to the set of all nonpointed cones. This approach has been explored in detail in a previous work of ours. We now go beyond this particular choice and set up an axiomatic background for addressing this issue. We define an index of pointedness over H as being a function f: C(H) ® R satisfying a certain number of axioms. The number f(K) is intended, of course, to measure the degree of pointedness of the cone K. Although several important examples are discussed to illustrate the theory in action, the emphasis of this work lies in the general properties that can be derived directly from the axiomatic model |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas aplicadas, Conos convexos, Conos sólidos, Indice de precisión, Dualidad |
Keyword: | Mathematics, Applied mathematics, Convex cones, Solid cones, Duality, Pointedness index |
Texto completo: | Texto completo (Ver HTML) |