Revista: | Computación y sistemas |
Base de datos: | |
Número de sistema: | 000607871 |
ISSN: | 1405-5546 |
Autores: | Uribe, Diego1 Cuan, Enrique1 Urquizo, Elisa1 |
Instituciones: | 1Instituto Tecnológico de la Laguna, Coahuila. México |
Año: | 2024 |
Periodo: | Ene-Mar |
Volumen: | 28 |
Número: | 1 |
Paginación: | 109-124 |
País: | México |
Idioma: | Inglés |
Resumen en inglés | The focus of this work is to analyze the implications of pre-training tasks in the development of language models for learning linguistic representations. In particular, we study three pre-trained BERT models and their corresponding unsupervised training tasks (e.g., MLM, Distillation, etc.). To consider similarities and differences, we fine-tune these language representation models on the classification task of four different categories of short answer responses. This fine-tuning process is implemented with two different neural architectures: with just one additional output layer and with a multilayer perceptron. In this way, we enrich the comparison of the pre-trained BERT models from three perspectives: the pre-training tasks in the development of language models, the fine-tuning process with different neural architectures, and the computational cost demanded on the classification of short answer responses. |
Keyword: | Language models, Pre-training tasks, BERT, Fine-tuning |
Texto completo: | Texto completo (Ver PDF) Texto completo (Ver HTML) |