Prescribed-Time Trajectory Tracking Control of Wheeled Mobile Robots Using Neural Networks and Robust Control Techniques



Título del documento: Prescribed-Time Trajectory Tracking Control of Wheeled Mobile Robots Using Neural Networks and Robust Control Techniques
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000607894
ISSN: 1405-5546
Autores: 1
1
1
2
Instituciones: 1Instituto Politécnico Nacional, Tijuana. México
2Instituto Politécnico Nacional, México
3CONAHCyT, México
Año:
Periodo: Abr-Jun
Volumen: 28
Número: 2
Paginación: 821-836
País: México
Idioma: Inglés
Resumen en inglés This research presents a novel trajectory generation algorithm and the design of a prescribed time controller for trajectory tracking tasks for autonomous vehicles. The trajectory generation algorithm uses a hybrid combination of computer vision techniques and intelligent rail detection methods using an on-board camera. Based on the previous information, a possible trajectory is then generated that the vehicle should follow. A time-prescribed controller is then developed and implemented to track the trajectory generated by the proposed methodology. The controller uses a hybrid structure in which a time-varying feedback controller transitions into a fixed-time controller. This approach achieves stabilization in the prescribed time despite the initial conditions. To address the trajectory design, a scaled autonomous vehicle simulator was used to then evaluate the prescribed time controller compared to a finite time controller and a dynamic feedback controller. The simulation results demonstrate the effectiveness of trajectory generation and trajectory tracking control algorithms in addressing these challenges in real-world scenarios by examining two situations: unperturbed and perturbed cases.
Keyword: Prescribed time stabilization,
Trajectory generation,
Neural networks
Texto completo: Texto completo (Ver PDF) Texto completo (Ver HTML)