Revista: | Computación y sistemas |
Base de datos: | |
Número de sistema: | 000607903 |
ISSN: | 1405-5546 |
Autores: | Moustafa, Maaskri1 Mokhtar Mostefaoui, Sid Ahmed1 Hadj Meghazi, Madani1 Goismi, Mohamed2 |
Instituciones: | 1University of Tiaret, Computer Science Department, Argelia 2Dr. Tahar Moulay University, Computer Science Department, Argelia |
Año: | 2024 |
Periodo: | Abr-Jun |
Volumen: | 28 |
Número: | 2 |
Paginación: | 507-516 |
País: | México |
Idioma: | Inglés |
Resumen en inglés | COVID-19 is a virus that has spread rapidly over the globe. The condition has repercussions beyond the realm of public health. Twitter is one platform where people post reactions to events during the outbreak. User-generated information, like tweets, presents unique challenges for sentiment analysis on Twitter data. With that in mind, this work employs four methods for analyzing Twitter data in terms of sentiment: the vector space model (TF-IDF) with three different ensemble machine learning models (voting, bagging, and stacking) and BERT (Bidirectional Encoder Representations from Transformers). Experiments showed that BERT outperformed the other three techniques, with an F1-score of 74%, a precision of 74%, and a recall of 74% for categorizing five sentiment classes on data from a Kaggle competition (Coronavirus tweets NLP-Text Classification). |
Keyword: | Ensemble machine learning, Deep learning, Voting, Bagging, Stacking, BERT |
Texto completo: | Texto completo (Ver PDF) Texto completo (Ver HTML) |