Functional Expansions Based Multilayer Perceptron Neural Network for Classification Task



Título del documento: Functional Expansions Based Multilayer Perceptron Neural Network for Classification Task
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000560414
ISSN: 1405-5546
Autores: 2
1
1
3
Instituciones: 1University Tun Hussein Onn Malaysia, Faculty of Computer Science and Information Technology, Johor. Malasia
2University of Faisalabad, Pakistan Riphah College of Computing Riphah International, Sargodha Road. Malasia
3University Tun Hussein Onn Malaysia, Department of Mathematics and Statistics, Johor. Malasia
Año:
Periodo: Oct-Dic
Volumen: 22
Número: 4
Paginación: 1625-1635
País: México
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés Artificial neural network has been proved among the best tools in data mining for classification tasks. Where, Multilayer Perceptron (MLP) is known as benchmarked technique for classification tasks due to common use and easy implementation. Meanwhile, it is fail to make high combination of inputs from lower feature space to higher feature space. In this paper, Shifted Genocchi polynomials and Chebyshev Wavelets functional expansions based Multilayer Perceptron techniques with Levenberg Marquardt back propagation learning are proposed to deal with high dimension problems in classification tasks. Five datasets from UCI repository and KEEL datasets were collected to evaluate the performance in terms of five evaluation measures. T-test was applied to check the significance of the proposed techniques. The comparison results show that the proposed models outperform in terms of accuracy, sensitivity, specificity, precision and f-measure.
Disciplinas: Ciencias de la computación
Palabras clave: Inteligencia artificial
Keyword: Data mining,
Classification,
Shifted Genocchi polynomials,
Chebyshev wavelets,
Multilayer perceptron,
Artificial intelligence
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)