Comparative Study for Text Chunking Using Deep Learning: Case of Modern Standard Arabic



Título del documento: Comparative Study for Text Chunking Using Deep Learning: Case of Modern Standard Arabic
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000607912
ISSN: 1405-5546
Autores: 1
1
Instituciones: 1University of Sfax, Sfax. Túnez
Año:
Periodo: Abr-Jun
Volumen: 28
Número: 2
Paginación: 517-527
País: México
Idioma: Inglés
Resumen en inglés The task of chunking involves dividing a sentence into smaller phrases by identifying a limited amount of syntactic information. This process involves grouping together consecutive words to form phrases, also known as shallow parsing. Chunking does not provide information on the relationships between these phrases. This paper describes our approach to building chunking models for Arabic text using deep learning techniques. We evaluated several training models and compared their results using a rich data set. The results we obtained were highly encouraging when compared to previous related studies.
Keyword: NLP,
Arabic language,
Shallow parsing,
Chunking,
Deep learning,
GRU,
LSTM,
BILSTM,
ATB,
Penn Arabic treebank
Texto completo: Texto completo (Ver PDF) Texto completo (Ver HTML)